# uGMAR

The goal of uGMAR is to provide tools for analysing Gaussian mixture autoregressive (GMAR), Student’s t mixture Autoregressive (StMAR) and Gaussian and Student’s t mixture autoregressive (G-StMAR) models. uGMAR provides functions for unconstrained and constrained maximum likelihood estimation of the model parameters, quantile residual based model diagnostics, simulation from the processes, and forecasting.

## Installation

You can install the released version of uGMAR from CRAN with:

install.packages("uGMAR")

And the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("saviviro/uGMAR")

## Example

This is a basic example how to estimate a GMAR model to data. The example data is simulated from a GMAR p=1, M=2 process. The estimation process is computationally demanding and takes advantage of parallel computing. After estimating the model, it’s shown by simple examples how to conduct some further analysis.

## Estimate a GMAR(1, 2) model and examine the estimates
data(simudata, package="uGMAR")
fit <- fitGSMAR(data=simudata, p=1, M=2, model="GMAR", ncores=4)
fit
summary(fit) # Approximate standard errors in brackets
plot(fit)

get_gradient(fit) # The first order condition
get_soc(fit) # The second order condition (eigenvalues of approximated Hessian)
profile_logliks(fit) # Plot the profile log-likelihood functions

## Quantile residual diagnostics
quantileResidualPlot(fit)
diagnosticPlot(fit)
qrt <- quantileResidualTests(fit)

## Simulate a sample path from the estimated process
sim <- simulateGSMAR(fit, nsimu=100)
plot.ts(sim\$sample)

## Forecast future values of the process

# Estimate a GMAR(1, 2) model with the autoregressive coefficients restricted
# to be the same in both regimes:
fitr <- fitGSMAR(data=simudata, p=1, M=2, model="GMAR", restricted=TRUE,
ncores=4)

# Test with likelihood ratio tests whether the AR parameters are the same in