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circleFit Point cloud circle fit

Description

Fits a 2D horizontally-aligned circle on a set of 3D points.

Usage

circleFit(las, method = "irls", n = 5, inliers = 0.8, conf = 0.99, n_best = 0)
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Arguments

las LAS object.

method method for estimating the circle parameters. Currently available: "qr", "nm",
"irls" and "ransac".

n numeric - number of points selected on every RANSAC iteration.

inliers numeric - expected proportion of inliers among stem segments’ point cloud
chunks.

conf numeric - confidence level.

n_best integer - estimate optimal RANSAC parameters as the median of the n_best
estimations with lowest error.

Value

vector of parameters

cylinderFit Point cloud cylinder fit

Description

Fits a cylinder on a set of 3D points.

Usage

cylinderFit(
las,
method = "ransac",
n = 5,
inliers = 0.9,
conf = 0.95,
max_angle = 30,
n_best = 20

)

Arguments

las LAS object.

method method for estimating the cylinder parameters. Currently available: "nm", "irls",
"ransac" and "bf".

n numeric - number of points selected on every RANSAC iteration.

inliers numeric - expected proportion of inliers among stem segments’ point cloud
chunks.

conf numeric - confidence level.
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max_angle numeric - used when method == "bf". The maximum tolerated deviation, in
degrees, from an absolute vertical line (Z = c(0,0,1)).

n_best integer - estimate optimal RANSAC parameters as the median of the n_best
estimations with lowest error.

Value

vector of parameters

fastPointMetrics Calculate point neighborhood metrics

Description

Get statistics for every point in a LAS object. Neighborhood search methods are prefixed by ptm.

Usage

fastPointMetrics(
las,
method = ptm.voxel(),
which_metrics = ENABLED_POINT_METRICS$names

)

Arguments

las LAS object.

method neighborhood search algorithm. Currently available: ptm.voxel and ptm.knn.

which_metrics optional character vector - list of metrics (by name) to be calculated. Check
out fastPointMetrics.available for a list of all metrics.

Details

Individual or voxel-wise point metrics build up the basis for many studies involving TLS in forestry.
This function is used internally in other TreeLS methods for tree mapping and stem denoising, but
also may be useful to users interested in developing their own custom methods for point cloud clas-
sification/filtering of vegetation features or build up input datasets for machine learning classifiers.

fastPointMetrics provides a way to calculate several geometry related metrics (listed below) in
an optimized way. All metrics are calculated internally by C++ functions in a single pass (O(n)
time), hence fast. This function is provided for convenience, as it allows very fast calculations
of several complex variables on a single line of code, speeding up heavy work loads. For a more
flexible approach that allows user defined metrics check out point_metrics from the lidR package.

In order to avoid excessive memory use, not all available metrics are calculated by default. The
calculated metrics can be specified every time fastPointMetrics is run by naming the desired
metrics into the which_metrics argument, or changed globally for the active R session by setting
new default metrics using fastPointMetrics.available.
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Value

LAS object.

List of available point metrics

* EVi = i-th 3D eigen value

* EV2Di = i-th 2D eigen value

• N: number of nearest neighbors

• MinDist: minimum distance among neighbors

• MaxDist: maximum distance among neighbors

• MeanDist: mean distance

• SdDist: standard deviation of within neighborhood distances

• Linearity: linear saliency, (EV1 + EV2)/EV1

• Planarity: planar saliency, (EV2 + EV3)/EV1

• Scattering: EV3/EV1

• Omnivariance: (EV2 + EV3)/EV1

• Anisotropy: (EV1 − EV3)/EV1

• Eigentropy: −
∑n=3

i=1 EVi ∗ ln(EVi)

• EigenSum: sum of eigenvalues,
∑n=3

i=1 EVi

• Curvature: surface variation, EV3/EigenSum

• KnnRadius: 3D neighborhood radius

• KnnDensity: 3D point density (N / sphere volume)

• Verticality: absolute vertical deviation, in degrees

• ZRange: point neighborhood height difference

• ZSd: standard deviation of point neighborhood heights

• KnnRadius2d: 2D neighborhood radius

• KnnDensity2d: 2D point density (N / circle area)

• EigenSum2d: sum of 2D eigenvalues,
∑n=2

i=1 EV 2Di

• EigenRatio2d: EV 2D2/EV 2D1

• EigenValuei: 3D eigenvalues

• EigenVectorij: 3D eigenvector coefficients, i-th load of j-th eigenvector

References

Wang, D.; Hollaus, M.; Pfeifer, N., 2017. Feasibility of machine learning methods for separating
wood and leaf points from terrestrial laser scanning data. ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, Volume IV-2/W4.

Zhou, J. et. al., 2019. Separating leaf and wood points in terrestrial scanning data using multiple
optimal scales. Sensors, 19(8):1852.
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Examples

file = system.file("extdata", "pine.laz", package="TreeLS")
tls = readTLS(file, select='xyz')

all_metrics = fastPointMetrics.available()
my_metrics = all_metrics[c(1,4,6)]

tls = fastPointMetrics(tls, ptm.knn(10), my_metrics)
head(tls@data)
plot(tls, color='Linearity')

fastPointMetrics.available

Print available point metrics

Description

Print the list of available metrics for fastPointMetrics.

Usage

fastPointMetrics.available(enable = ENABLED_POINT_METRICS$names)

Arguments

enable optional integer or character vector containing indices or names of the met-
rics you want to enable globally. Enabled metrics are calculated every time you
run fastPointMetrics by default. Only metrics used internally in other TreeLS
methods are enabled out-of-the-box.

Value

character vector of all metrics.

List of available point metrics

* EVi = i-th 3D eigen value

* EV2Di = i-th 2D eigen value

• N: number of nearest neighbors

• MinDist: minimum distance among neighbors

• MaxDist: maximum distance among neighbors

• MeanDist: mean distance

• SdDist: standard deviation of within neighborhood distances

• Linearity: linear saliency, (EV1 + EV2)/EV1

• Planarity: planar saliency, (EV2 + EV3)/EV1
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• Scattering: EV3/EV1

• Omnivariance: (EV2 + EV3)/EV1

• Anisotropy: (EV1 − EV3)/EV1

• Eigentropy: −
∑n=3

i=1 EVi ∗ ln(EVi)

• EigenSum: sum of eigenvalues,
∑n=3

i=1 EVi

• Curvature: surface variation, EV3/EigenSum

• KnnRadius: 3D neighborhood radius
• KnnDensity: 3D point density (N / sphere volume)
• Verticality: absolute vertical deviation, in degrees
• ZRange: point neighborhood height difference
• ZSd: standard deviation of point neighborhood heights
• KnnRadius2d: 2D neighborhood radius
• KnnDensity2d: 2D point density (N / circle area)
• EigenSum2d: sum of 2D eigenvalues,

∑n=2
i=1 EV 2Di

• EigenRatio2d: EV 2D2/EV 2D1

• EigenValuei: 3D eigenvalues
• EigenVectorij: 3D eigenvector coefficients, i-th load of j-th eigenvector

Examples

m = fastPointMetrics.available()
length(m)

gpsTimeFilter Filter points based on the gpstime field

Description

This is a simple wrapper to filter_poi that takes as input relative values instead of absolute time
stamps for filtering LAS object based on the gpstime. This function is particularly useful to check
narrow intervals of point cloud frames from mobile scanning data.

Usage

gpsTimeFilter(las, from = 0, to = 1)

Arguments

las LAS object.
from, to numeric - gpstime percentile thresholds (from 0 to 1) to keep points in between.

Value

LAS object.
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map.eigen.knn Tree mapping algorithm: KNN point geometry

Description

This function is meant to be used inside treeMap. It applies a KNN filter to select points with spe-
cific neighborhood features. For more details on geometry features, check out fastPointMetrics.

Usage

map.eigen.knn(
max_curvature = 0.1,
max_verticality = 10,
max_mean_dist = 0.1,
max_d = 0.5,
min_h = 1.5,
max_h = 3

)

Arguments

max_curvature numeric - maximum curvature (from 0 to 1) accepted when filtering a point
neighborhood.

max_verticality

numeric - maximum deviation of a point neighborhood’s orientation from an
absolute vertical axis ( Z = c(0,0,1) ), in degrees (from 0 to 90).

max_mean_dist numeric - maximum mean distance tolerated from a point to its nearest neigh-
bors.

max_d numeric - largest tree diameter expected in the point cloud.

min_h, max_h numeric - height thresholds applied to filter a point cloud before processing.

Details

Point metrics are calculated for every point. Points are then removed depending on their point
metrics parameters and clustered to represent individual tree regions. Clusters are defined as a
function of the expected maximum diameter. Any fields added to the point cloud are described in
fastPointMetrics.

Eigen Decomposition of Point Neighborhoods

Point filtering/classification methods that rely on eigen decomposition rely on shape indices calcu-
lated for point neighborhoods (knn or voxel). To derive these shape indices, eigen decomposition
is performed on the XYZ columns of a point cloud patch. Metrics related to object curvature are
calculated upon ratios of the resulting eigen values, and metrics related to object orientation are
caltulated from approximate normals obtained from the eigen vectors.
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For instance, a point neighborhood that belongs to a perfect flat surface will have all of its variance
explained by the first two eigen values, and none explained by the third eigen value. The ’normal’
of such surface, i.e. the vector oriented in the direction orthogonal to the surface, is therefore
represented by the third eigenvector.

Methods for both tree mapping and stem segmentation use those metrics, so in order to speed up
the workflow one might apply fastPointMetrics to the point cloud before other methods. The
advantages of this approach are that users can parameterize the point neighborhoods themselves
when calculating their metrics. Those calculations won’t be performed again internally in the tree
mapping or stem denoising methods, reducing the overall processing time.

map.eigen.voxel Tree mapping algorithm: Voxel geometry

Description

This function is meant to be used inside treeMap. It applies a filter to select points belonging to
voxels with specific features. For more details on geometry features, check out fastPointMetrics.

Usage

map.eigen.voxel(
max_curvature = 0.15,
max_verticality = 15,
voxel_spacing = 0.1,
max_d = 0.5,
min_h = 1.5,
max_h = 3

)

Arguments

max_curvature numeric - maximum curvature (from 0 to 1) accepted when filtering a point
neighborhood.

max_verticality

numeric - maximum deviation of a point neighborhood’s orientation from an
absolute vertical axis ( Z = c(0,0,1) ), in degrees (from 0 to 90).

voxel_spacing numeric - voxel side length, in point cloud units.

max_d numeric - largest tree diameter expected in the point cloud.

min_h, max_h numeric - height thresholds applied to filter a point cloud before processing.

Details

Point metrics are calculated for every voxel. Points are then removed depending on their voxel’s
metrics metrics parameters and clustered to represent individual tree regions. Clusters are defined
as a function of the expected maximum diameter. Any fields added to the point cloud are described
in fastPointMetrics.
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Eigen Decomposition of Point Neighborhoods

Point filtering/classification methods that rely on eigen decomposition rely on shape indices calcu-
lated for point neighborhoods (knn or voxel). To derive these shape indices, eigen decomposition
is performed on the XYZ columns of a point cloud patch. Metrics related to object curvature are
calculated upon ratios of the resulting eigen values, and metrics related to object orientation are
caltulated from approximate normals obtained from the eigen vectors.
For instance, a point neighborhood that belongs to a perfect flat surface will have all of its variance
explained by the first two eigen values, and none explained by the third eigen value. The ’normal’
of such surface, i.e. the vector oriented in the direction orthogonal to the surface, is therefore
represented by the third eigenvector.
Methods for both tree mapping and stem segmentation use those metrics, so in order to speed up
the workflow one might apply fastPointMetrics to the point cloud before other methods. The
advantages of this approach are that users can parameterize the point neighborhoods themselves
when calculating their metrics. Those calculations won’t be performed again internally in the tree
mapping or stem denoising methods, reducing the overall processing time.

map.hough Tree mapping algorithm: Hough Transform

Description

This function is meant to be used inside treeMap. It applies an adapted version of the Hough
Transform for circle search. Mode details are given in the sections below.

Usage

map.hough(
min_h = 1,
max_h = 3,
h_step = 0.5,
pixel_size = 0.025,
max_d = 0.5,
min_density = 0.1,
min_votes = 3

)

Arguments

min_h, max_h numeric - height thresholds applied to filter a point cloud before processing.
h_step numeric - height interval to perform point filtering/assignment/classification.
pixel_size numeric - pixel side length to discretize the point cloud layers while performing

the Hough Transform circle search.
max_d numeric - largest tree diameter expected in the point cloud.
min_density numeric - between 0 and 1 - minimum point density within a pixel evaluated on

the Hough Transform - i.e. only dense point clousters will undergo circle search.
min_votes integer - Hough Transform parameter - minimum number of circle intersec-

tions over a pixel to assign it as a circle center candidate.
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LAS@data Special Fields

Each point in the LAS object output represents a pixel center that is possibly also a stem cross-section
center.

The variables describing each point in the output are:

• Intensity: number of votes received by that point

• PointSourceID: unique stem segment ID (among all trees)

• Keypoint_flag: if TRUE, the point is the most likely circle center of its stem segment (PointSourceID)

• Radii: approximate radius estimated by that point - always a multiple of the pixel_size

• TreeID: unique tree ID of the point

• TreePosition: if TRUE, the point represents the tree’s position coordinate

Adapted Hough Transform

The Hough Transform circle search algorithm used in TreeLS applies a constrained circle search
on discretized point cloud layers. Tree-wise, the circle search is recursive, in which the search for
circle parameters of a stem section is constrained to the feature space of the stem section underneath
it. Initial estimates of the stem’s feature space are performed on a baselise stem segment - i.e. a low
height interval where a tree’s bole is expected to be clearly visible in the point cloud. The algorithm
is described in detail by Conto et al. (2017).

This adapted version of the algorithm is very robust against outliers, but not against forked or
leaning stems.

Tree Selection

An initial tree filter is used to select probable trees in the input point cloud. Parallel stacked layers,
each one as thick as hstep, undergo the circle search within the hmin/hmax limits. On every layer,
pixels above the min_votes criterion are clustered, forming probability zones. Probability zones
vertically aligned on at least 3/4 of the stacked layers are assigned as tree occurrence regions and
exported in the output map.

References

Conto, T. et al., 2017. Performance of stem denoising and stem modelling algorithms on single tree
point clouds from terrestrial laser scanning. Computers and Electronics in Agriculture, v. 143, p.
165-176.

Examples

file = system.file("extdata", "pine_plot.laz", package="TreeLS")
tls = readTLS(file) %>%

tlsNormalize %>%
tlsSample

x = plot(tls)

map = treeMap(tls, map.hough(h_step = 1, max_h = 4))
add_treeMap(x, map, color='red')
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xymap = treeMap.positions(map)

map.pick Tree mapping algorithm: pick trees manually

Description

This function is meant to be used inside treeMap. It opens an interactive rgl plot where the user
can specify tree locations by clicking.

Usage

map.pick(map = NULL, min_h = 1, max_h = 5)

Arguments

map optional tree map to be manually updated.

min_h, max_h numeric - height thresholds applied to filter a point cloud before processing.

nnFilter Nearest neighborhood point filter

Description

Remove isolated points from a LAS point cloud based on their neighborhood distances.

Usage

nnFilter(las, d = 0.05, n = 2)

Arguments

las LAS object.

d numeric - search radius.

n numeric - number of neighbors within d distance a point must have to be kept
in the output.

Value

LAS object.
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Examples

file = system.file("extdata", "spruce.laz", package="TreeLS")
tls = readTLS(file)
nrow(tls@data)

nn_tls = nnFilter(tls, 0.05, 3)
nrow(nn_tls@data)

ptm.knn Point metrics algorithm: K Nearest Neighbors metrics

Description

This function is meant to be used inside fastPointMetrics. It calculates metrics for every point
using its nearest neighbors (KNN).

Usage

ptm.knn(k = 20, r = 0)

Arguments

k numeric - number of nearest points to search per neighborhood.

r numeric - search radius limit. If r == 0, no distance limit is applied.

ptm.voxel Point metrics algorithm: Voxel metrics

Description

This function is meant to be used inside fastPointMetrics. It calculates metrics per voxel.

Usage

ptm.voxel(d = 0.1, exact = FALSE)

Arguments

d numeric - voxel spacing, in point cloud units.

exact logical - use exact voxel search? If FALSE, applies approximate voxel search
using integer index hashing, much faster on large point clouds (several million
points).
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readTLS Import a point cloud file into a LAS object

Description

Wrapper to read point cloud files straight into LAS objects. Reads las or laz files with readLAS, ply
files with read.las and other file formats with fread (txt, xyz, 3d or any other table like format).

Usage

readTLS(file, col_names = NULL, ...)

Arguments

file file path.

col_names optional - character vector. Only used for table-like objects. It states the
column names. If not set, only the 3 first columns will be used and assigned to
the XYZ fields.

... further arguments passed down to readLAS, read.las or fread.

Value

LAS object.

Examples

cloud = matrix(runif(300), ncol=3)
file = tempfile(fileext = '.txt')
fwrite(cloud, file)
tls = readTLS(file)
summary(tls)

setTLS (Re-)Create a LAS object depending on the input’s type

Description

Reset the input’s header if it is a LAS object, or generate a new LAS from a table-like input. For more
information, checkout lidR::LAS.

Usage

setTLS(cloud, col_names = NULL)
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Arguments

cloud LAS, data.frame, matrix or similar object to be converted.

col_names optional - character vector. Only used for table-like objects. It states the
column names. If not set, only the 3 first columns will be used and assigned to
the XYZ fields.

Value

LAS object.

Examples

cloud = matrix(runif(300, 0, 10), ncol=3)
cloud = setTLS(cloud)
summary(cloud)

sgt.bf.cylinder Stem segmentation algorithm: Brute Force cylinder fit

Description

This function is meant to be used inside stemSegmentation. It applies a least squares cylinder fit
algorithm in a RANSAC fashion over stem segments. More details are given in the sections below.

Usage

sgt.bf.cylinder(tol = 0.1, n = 10, conf = 0.95, inliers = 0.9, z_dev = 30)

Arguments

tol numeric - tolerance offset between absolute radii estimates and hough transform
estimates.

n numeric - number of points selected on every RANSAC iteration.

conf numeric - confidence level.

inliers numeric - expected proportion of inliers among stem segments’ point cloud
chunks.

z_dev numeric - maximum angle deviation for brute force cylinder estimation (bf),
i.e. angle, in degrees (0-90), that a cylinder can be tilted in relation to a perfect
vertival axis (Z = c(0,0,1)).
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Brute Force Cylinder Fit

The brute force cylinder fit approach estimates the axis rotation angles by brute force combined with
2D ransac circle fit. The coordinates of a point cloud representing a single cylinder are iteratively
rotated up to a pre defined threshold, and for every iteration a circle is estimated after rotation is
performed. The rotation that minimizes the circle parameters the most is used to describe the axis
direction of the cylinder with the circle’s radius.

The parameters returned by the brute force cylinder fit method are:

• X,Y: 2D circle center coordinates after rotation

• Radius: 3D circle radius, in point cloud units

• Error: model circle error from the RANSAC least squares fit, after rotation

• DX,DY: absolute rotation angles (in degrees) applied to the X and Y axes, respectively

• AvgHeight: average height of the stem segment’s points

• N: number of points belonging to the stem segment

sgt.irls.circle Stem segmentation algorithm: Iterated Reweighted Least Squares cir-
cle fit

Description

This function is meant to be used inside stemSegmentation. It applies a reweighted least squares
circle fit algorithm using M-estimators in order to remove outlier effects.

Usage

sgt.irls.circle(tol = 0.1, n = 500)

Arguments

tol numeric - tolerance offset between absolute radii estimates and hough transform
estimates.

n numeric - maximum number of points to sample for fitting stem segments.

Iterative Reweighted Least Squares (IRLS) Algorithm

irls circle or cylinder estimation methods perform automatic outlier assigning through iterative
reweighting with M-estimators, followed by a Nelder-Mead optimization of squared distance sums
to determine the best circle/cylinder parameters for a given point cloud. The reweighting strategy
used in TreeLS is based on Liang et al. (2012). The Nelder-Mead algorithm implemented in Rcpp
was provided by kthohr/optim.

https://github.com/kthohr/optim


sgt.irls.cylinder 17

Least Squares Circle Fit

The circle fit methods applied in TreeLS estimate the circle parameters (its center’s XY coordinates
and radius) from a pre-selected (denoised) set of points in a least squares fashion by applying either
QR decompostion, used in combination with the RANSAC algorithm, or Nelder-Mead simplex
optimization combined the IRLS approach.

The parameters returned by the circle fit methods are:

• X,Y: 2D circle center coordinates

• Radius: 2D circle radius, in point cloud units

• Error: model circle error from the least squares fit

• AvgHeight: average height of the stem segment’s points

• N: number of points belonging to the stem segment

References

Liang, X. et al., 2012. Automatic stem mapping using single-scan terrestrial laser scanning. IEEE
Transactions on Geoscience and Remote Sensing, 50(2), pp.661–670.

Conto, T. et al., 2017. Performance of stem denoising and stem modelling algorithms on single tree
point clouds from terrestrial laser scanning. Computers and Electronics in Agriculture, v. 143, p.
165-176.

sgt.irls.cylinder Stem segmentation algorithm: Iterated Reweighted Least Squares
cylinder fit

Description

This function is meant to be used inside stemSegmentation. It applies a reweighted least squares
cylinder fit algorithm using M-estimators and Nelder-Mead optimization in order to remove outlier
effects.

Usage

sgt.irls.cylinder(tol = 0.1, n = 100)

Arguments

tol numeric - tolerance offset between absolute radii estimates and hough transform
estimates.

n numeric - maximum number of points to sample for fitting stem segments.

https://en.wikipedia.org/wiki/QR_decomposition
https://en.wikipedia.org/wiki/Nelder-Mead_method
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Iterative Reweighted Least Squares (IRLS) Algorithm

irls circle or cylinder estimation methods perform automatic outlier assigning through iterative
reweighting with M-estimators, followed by a Nelder-Mead optimization of squared distance sums
to determine the best circle/cylinder parameters for a given point cloud. The reweighting strategy
used in TreeLS is based on Liang et al. (2012). The Nelder-Mead algorithm implemented in Rcpp
was provided by kthohr/optim.

Least Squares Cylinder Fit

The cylinder fit methods implemented in TreeLS estimate a 3D cylinder‘s axis direction and radius.
The algorithm used internally to optimize the cylinder parameters is the Nelder-Mead simplex,
which takes as objective function the model describing the distance from any point to a modelled
cylinder‘s surface on a regular 3D cylinder point cloud:

Dp = |(p− q)× a| − r

where:

• Dp: distance from a point to the model cylinder‘s surface

• p: a point on the cylinder‘s surface

• q: a point on the cylinder‘s axis

• a: unit vector of cylinder‘s direction

• r: cylinder‘s radius

The Nelder-Mead algorithm minimizes the sum of squared Dp from a set of points belonging to a
stem segment - in the context of TreeLS.

The parameters returned by the cylinder fit methods are:

• rho,theta,phi,alpha: 3D cylinder estimated axis parameters (Liang et al. 2012)

• Radius: 3D cylinder radius, in point cloud units

• Error: model cylinder error from the least squares fit

• AvgHeight: average height of the stem segment’s points

• N: number of points belonging to the stem segment

• PX,PY,PZ: absolute center positions of the stem segment points, in point cloud units (used for
plotting)

References

Liang, X. et al., 2012. Automatic stem mapping using single-scan terrestrial laser scanning. IEEE
Transactions on Geoscience and Remote Sensing, 50(2), pp.661–670.

Conto, T. et al., 2017. Performance of stem denoising and stem modelling algorithms on single tree
point clouds from terrestrial laser scanning. Computers and Electronics in Agriculture, v. 143, p.
165-176.

https://github.com/kthohr/optim
https://en.wikipedia.org/wiki/Nelder-Mead_method
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sgt.ransac.circle Stem segmentation algorithm: RANSAC circle fit

Description

This function is meant to be used inside stemSegmentation. It applies a least squares circle fit
algorithm in a RANSAC fashion over stem segments. More details are given in the sections below.

Usage

sgt.ransac.circle(tol = 0.1, n = 10, conf = 0.99, inliers = 0.8)

Arguments

tol numeric - tolerance offset between absolute radii estimates and hough transform
estimates.

n numeric - number of points selected on every RANSAC iteration.

conf numeric - confidence level.

inliers numeric - expected proportion of inliers among stem segments’ point cloud
chunks.

Random Sample Consensus (RANSAC) Algorithm

The RANdom SAmple Consensus algorithm is a method that relies on resampling a data set as
many times as necessary to find a subset comprised of only inliers - e.g. observations belonging to
a desired model. The RANSAC algorithm provides a way of estimating the necessary number of
iterations necessary to fit a model using inliers only, at least once, as shown in the equation:

k = log(1− p)/log(1− wn)

where:

• k: number of iterations

• p: confidence level, i.e. desired probability of success

• w: proportion of inliers expected in the full dataset

• n: number of observations sampled on every iteration

The models reiterated in TreeLS usually relate to circle or cylinder fitting over a set of 3D coordi-
nates, selecting the best possible model through the RANSAC algorithm

For more information, checkout this wikipedia page.

https://en.wikipedia.org/wiki/Random_sample_consensus
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Least Squares Circle Fit

The circle fit methods applied in TreeLS estimate the circle parameters (its center’s XY coordinates
and radius) from a pre-selected (denoised) set of points in a least squares fashion by applying either
QR decompostion, used in combination with the RANSAC algorithm, or Nelder-Mead simplex
optimization combined the IRLS approach.

The parameters returned by the circle fit methods are:

• X,Y: 2D circle center coordinates

• Radius: 2D circle radius, in point cloud units

• Error: model circle error from the least squares fit

• AvgHeight: average height of the stem segment’s points

• N: number of points belonging to the stem segment

References

Olofsson, K., Holmgren, J. & Olsson, H., 2014. Tree stem and height measurements using terrestrial
laser scanning and the RANSAC algorithm. Remote Sensing, 6(5), pp.4323–4344.

Conto, T. et al., 2017. Performance of stem denoising and stem modelling algorithms on single tree
point clouds from terrestrial laser scanning. Computers and Electronics in Agriculture, v. 143, p.
165-176.

sgt.ransac.cylinder Stem segmentation algorithm: RANSAC cylinder fit

Description

This function is meant to be used inside stemSegmentation. It applies a least squares cylinder fit
algorithm in a RANSAC fashion over stem segments. More details are given in the sections below.

Usage

sgt.ransac.cylinder(tol = 0.1, n = 10, conf = 0.95, inliers = 0.9)

Arguments

tol numeric - tolerance offset between absolute radii estimates and hough transform
estimates.

n numeric - number of points selected on every RANSAC iteration.

conf numeric - confidence level.

inliers numeric - expected proportion of inliers among stem segments’ point cloud
chunks.

https://en.wikipedia.org/wiki/QR_decomposition
https://en.wikipedia.org/wiki/Nelder-Mead_method
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Random Sample Consensus (RANSAC) Algorithm

The RANdom SAmple Consensus algorithm is a method that relies on resampling a data set as
many times as necessary to find a subset comprised of only inliers - e.g. observations belonging to
a desired model. The RANSAC algorithm provides a way of estimating the necessary number of
iterations necessary to fit a model using inliers only, at least once, as shown in the equation:

k = log(1− p)/log(1− wn)

where:

• k: number of iterations

• p: confidence level, i.e. desired probability of success

• w: proportion of inliers expected in the full dataset

• n: number of observations sampled on every iteration

The models reiterated in TreeLS usually relate to circle or cylinder fitting over a set of 3D coordi-
nates, selecting the best possible model through the RANSAC algorithm

For more information, checkout this wikipedia page.

Least Squares Cylinder Fit

The cylinder fit methods implemented in TreeLS estimate a 3D cylinder‘s axis direction and radius.
The algorithm used internally to optimize the cylinder parameters is the Nelder-Mead simplex,
which takes as objective function the model describing the distance from any point to a modelled
cylinder‘s surface on a regular 3D cylinder point cloud:

Dp = |(p− q)× a| − r

where:

• Dp: distance from a point to the model cylinder‘s surface

• p: a point on the cylinder‘s surface

• q: a point on the cylinder‘s axis

• a: unit vector of cylinder‘s direction

• r: cylinder‘s radius

The Nelder-Mead algorithm minimizes the sum of squared Dp from a set of points belonging to a
stem segment - in the context of TreeLS.

The parameters returned by the cylinder fit methods are:

• rho,theta,phi,alpha: 3D cylinder estimated axis parameters (Liang et al. 2012)

• Radius: 3D cylinder radius, in point cloud units

• Error: model cylinder error from the least squares fit

• AvgHeight: average height of the stem segment’s points

• N: number of points belonging to the stem segment

• PX,PY,PZ: absolute center positions of the stem segment points, in point cloud units (used for
plotting)

https://en.wikipedia.org/wiki/Random_sample_consensus
https://en.wikipedia.org/wiki/Nelder-Mead_method
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References

Liang, X. et al., 2012. Automatic stem mapping using single-scan terrestrial laser scanning. IEEE
Transactions on Geoscience and Remote Sensing, 50(2), pp.661–670.
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shapeFit Point cloud cylinder/circle fit

Description

Fits a 3D cylinder or 2D circle on a set of 3D points, retrieving the optimized parameters.

Usage

shapeFit(
stem_segment = NULL,
shape = "circle",
algorithm = "ransac",
n = 10,
conf = 0.95,
inliers = 0.9,
n_best = 10,
z_dev = 30

)

Arguments

stem_segment NULL or a LAS object with a single stem segment. When NULL returns a parame-
terized function to be used as input in other functions (e.g. tlsInventory).

shape character, either "circle" or "cylinder".

algorithm optimization method for estimating the shape’s parameters. Currently available:
"ransac", "irls", "nm", "qr" (circle only) ,"bf" (cylinder only).

n numeric - number of points selected on every RANSAC iteration.

conf numeric - confidence level.

inliers numeric - expected proportion of inliers among stem segments’ point cloud
chunks.

n_best integer - estimate optimal RANSAC parameters as the median of the n_best
estimations with lowest error.

z_dev numeric - maximum angle deviation for brute force cylinder estimation (bf),
i.e. angle, in degrees (0-90), that a cylinder can be tilted in relation to a perfect
vertival axis (Z = c(0,0,1)).
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Details

The ransac and irls methods are robust, which means they estimate the circle/cylinder parameters
in a way that takes into consideration outlier effects (noise). If the input data is already noise free,
the nm or qr algorithms can be used with as good reliability, while being much faster.

Least Squares Circle Fit

The circle fit methods applied in TreeLS estimate the circle parameters (its center’s XY coordinates
and radius) from a pre-selected (denoised) set of points in a least squares fashion by applying either
QR decompostion, used in combination with the RANSAC algorithm, or Nelder-Mead simplex
optimization combined the IRLS approach.

The parameters returned by the circle fit methods are:

• X,Y: 2D circle center coordinates
• Radius: 2D circle radius, in point cloud units
• Error: model circle error from the least squares fit
• AvgHeight: average height of the stem segment’s points
• N: number of points belonging to the stem segment

Least Squares Cylinder Fit

The cylinder fit methods implemented in TreeLS estimate a 3D cylinder‘s axis direction and radius.
The algorithm used internally to optimize the cylinder parameters is the Nelder-Mead simplex,
which takes as objective function the model describing the distance from any point to a modelled
cylinder‘s surface on a regular 3D cylinder point cloud:

Dp = |(p− q)× a| − r

where:

• Dp: distance from a point to the model cylinder‘s surface
• p: a point on the cylinder‘s surface
• q: a point on the cylinder‘s axis
• a: unit vector of cylinder‘s direction
• r: cylinder‘s radius

The Nelder-Mead algorithm minimizes the sum of squared Dp from a set of points belonging to a
stem segment - in the context of TreeLS.

The parameters returned by the cylinder fit methods are:

• rho,theta,phi,alpha: 3D cylinder estimated axis parameters (Liang et al. 2012)
• Radius: 3D cylinder radius, in point cloud units
• Error: model cylinder error from the least squares fit
• AvgHeight: average height of the stem segment’s points
• N: number of points belonging to the stem segment
• PX,PY,PZ: absolute center positions of the stem segment points, in point cloud units (used for

plotting)

https://en.wikipedia.org/wiki/QR_decomposition
https://en.wikipedia.org/wiki/Nelder-Mead_method
https://en.wikipedia.org/wiki/Nelder-Mead_method
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Random Sample Consensus (RANSAC) Algorithm

The RANdom SAmple Consensus algorithm is a method that relies on resampling a data set as
many times as necessary to find a subset comprised of only inliers - e.g. observations belonging to
a desired model. The RANSAC algorithm provides a way of estimating the necessary number of
iterations necessary to fit a model using inliers only, at least once, as shown in the equation:

k = log(1− p)/log(1− wn)

where:

• k: number of iterations

• p: confidence level, i.e. desired probability of success

• w: proportion of inliers expected in the full dataset

• n: number of observations sampled on every iteration

The models reiterated in TreeLS usually relate to circle or cylinder fitting over a set of 3D coordi-
nates, selecting the best possible model through the RANSAC algorithm

For more information, checkout this wikipedia page.

Iterative Reweighted Least Squares (IRLS) Algorithm

irls circle or cylinder estimation methods perform automatic outlier assigning through iterative
reweighting with M-estimators, followed by a Nelder-Mead optimization of squared distance sums
to determine the best circle/cylinder parameters for a given point cloud. The reweighting strategy
used in TreeLS is based on Liang et al. (2012). The Nelder-Mead algorithm implemented in Rcpp
was provided by kthohr/optim.

Brute Force Cylinder Fit

The brute force cylinder fit approach estimates the axis rotation angles by brute force combined with
2D ransac circle fit. The coordinates of a point cloud representing a single cylinder are iteratively
rotated up to a pre defined threshold, and for every iteration a circle is estimated after rotation is
performed. The rotation that minimizes the circle parameters the most is used to describe the axis
direction of the cylinder with the circle’s radius.

The parameters returned by the brute force cylinder fit method are:

• X,Y: 2D circle center coordinates after rotation

• Radius: 3D circle radius, in point cloud units

• Error: model circle error from the RANSAC least squares fit, after rotation

• DX,DY: absolute rotation angles (in degrees) applied to the X and Y axes, respectively

• AvgHeight: average height of the stem segment’s points

• N: number of points belonging to the stem segment

https://en.wikipedia.org/wiki/Random_sample_consensus
https://github.com/kthohr/optim
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References
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Transactions on Geoscience and Remote Sensing, 50(2), pp.661–670.

Olofsson, K., Holmgren, J. & Olsson, H., 2014. Tree stem and height measurements using terrestrial
laser scanning and the RANSAC algorithm. Remote Sensing, 6(5), pp.4323–4344.
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Examples

file = system.file("extdata", "pine.laz", package="TreeLS")
tls = readTLS(file)
segment = filter_poi(tls, Z > 1 & Z < 2)
pars = shapeFit(segment, shape='circle', algorithm='irls')

segment@data %$% plot(Y ~ X, pch=20, asp=1)
pars %$% points(X,Y,col='red', pch=3, cex=2)
pars %$% lines(c(X,X+Radius),c(Y,Y), col='red',lwd=2,lty=2)

shapeFit.forks EXPERIMENTAL: Point cloud multiple circle fit

Description

Search and fit multiple 2D circles on a point cloud layer from a single tree, i.e. a forked stem
segment.

Usage

shapeFit.forks(
dlas,
pixel_size = 0.02,
max_d = 0.4,
votes_percentile = 0.7,
min_density = 0.25,
plot = FALSE

)

Arguments

dlas LAS object.

pixel_size numeric - pixel side length to discretize the point cloud layers while performing
the Hough Transform circle search.

max_d numeric - largest tree diameter expected in the point cloud.
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votes_percentile

numeric - use only estimates with more votes than votes_percentile.

min_density numeric - between 0 and 1 - minimum point density within a pixel evaluated on
the Hough Transform - i.e. only dense point clousters will undergo circle search.

plot logical - plot the results?

smp.randomize Point sampling algorithm: random sample

Description

This function is meant to be used inside tlsSample. It selects points randomly, returning a fraction
of the input point cloud.

Usage

smp.randomize(p = 0.5)

Arguments

p numeric - sampling probability (from 0 to 1).

smp.voxelize Point sampling algorithm: systematic voxel grid

Description

This function is meant to be used inside tlsSample. It selects one random point per voxel at a given
spatial resolution.

Usage

smp.voxelize(spacing = 0.05)

Arguments

spacing numeric - voxel side length, in point cloud units.
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stemPoints Stem points classification

Description

Classify stem points of all trees in a normalized point cloud. Stem denoising methods are prefixed
by stm.

Usage

stemPoints(las, method = stm.hough())

Arguments

las LAS object.

method stem denoising algorithm. Currently available: stm.hough, stm.eigen.knn
and stm.eigen.voxel.

Value

LAS object.

Examples

### single tree
file = system.file("extdata", "spruce.laz", package="TreeLS")
tls = readTLS(file) %>%

tlsNormalize %>%
stemPoints(stm.hough(h_base = c(.5,2)))

plot(tls, color='Stem')

### entire forest plot
file = system.file("extdata", "pine_plot.laz", package="TreeLS")
tls = readTLS(file) %>%

tlsNormalize %>%
tlsSample

map = treeMap(tls, map.hough())
tls = treePoints(tls, map, trp.crop(circle=FALSE))
tls = stemPoints(tls, stm.hough(pixel_size = 0.03))
tlsPlot(tls)
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stemSegmentation Stem segmentation

Description

Measure stem segments from a point cloud with assigned stem points. Stem segmentation methods
are prefixed by sgt.

Usage

stemSegmentation(las, method = sgt.ransac.circle())

Arguments

las LAS object.

method stem segmentation algorithm. Currently available: sgt.ransac.circle, sgt.ransac.cylinder,
sgt.irls.circle, sgt.irls.cylinder and sgt.bf.cylinder.

Details

All stem segmentation algorithms return estimations for every stem Segment of every TreeID (if
the input LAS has multiple trees). For more details and a list of all outputs for each method check
the sections below.

Value

signed data.table of stem segments.

Random Sample Consensus (RANSAC) Algorithm

The RANdom SAmple Consensus algorithm is a method that relies on resampling a data set as
many times as necessary to find a subset comprised of only inliers - e.g. observations belonging to
a desired model. The RANSAC algorithm provides a way of estimating the necessary number of
iterations necessary to fit a model using inliers only, at least once, as shown in the equation:

k = log(1− p)/log(1− wn)

where:

• k: number of iterations

• p: confidence level, i.e. desired probability of success

• w: proportion of inliers expected in the full dataset

• n: number of observations sampled on every iteration

The models reiterated in TreeLS usually relate to circle or cylinder fitting over a set of 3D coordi-
nates, selecting the best possible model through the RANSAC algorithm

For more information, checkout this wikipedia page.

https://en.wikipedia.org/wiki/Random_sample_consensus
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Iterative Reweighted Least Squares (IRLS) Algorithm

irls circle or cylinder estimation methods perform automatic outlier assigning through iterative
reweighting with M-estimators, followed by a Nelder-Mead optimization of squared distance sums
to determine the best circle/cylinder parameters for a given point cloud. The reweighting strategy
used in TreeLS is based on Liang et al. (2012). The Nelder-Mead algorithm implemented in Rcpp
was provided by kthohr/optim.

Least Squares Circle Fit

The circle fit methods applied in TreeLS estimate the circle parameters (its center’s XY coordinates
and radius) from a pre-selected (denoised) set of points in a least squares fashion by applying either
QR decompostion, used in combination with the RANSAC algorithm, or Nelder-Mead simplex
optimization combined the IRLS approach.

The parameters returned by the circle fit methods are:

• X,Y: 2D circle center coordinates

• Radius: 2D circle radius, in point cloud units

• Error: model circle error from the least squares fit

• AvgHeight: average height of the stem segment’s points

• N: number of points belonging to the stem segment

Least Squares Cylinder Fit

The cylinder fit methods implemented in TreeLS estimate a 3D cylinder‘s axis direction and radius.
The algorithm used internally to optimize the cylinder parameters is the Nelder-Mead simplex,
which takes as objective function the model describing the distance from any point to a modelled
cylinder‘s surface on a regular 3D cylinder point cloud:

Dp = |(p− q)× a| − r

where:

• Dp: distance from a point to the model cylinder‘s surface

• p: a point on the cylinder‘s surface

• q: a point on the cylinder‘s axis

• a: unit vector of cylinder‘s direction

• r: cylinder‘s radius

The Nelder-Mead algorithm minimizes the sum of squared Dp from a set of points belonging to a
stem segment - in the context of TreeLS.

The parameters returned by the cylinder fit methods are:

• rho,theta,phi,alpha: 3D cylinder estimated axis parameters (Liang et al. 2012)

• Radius: 3D cylinder radius, in point cloud units

• Error: model cylinder error from the least squares fit

https://github.com/kthohr/optim
https://en.wikipedia.org/wiki/QR_decomposition
https://en.wikipedia.org/wiki/Nelder-Mead_method
https://en.wikipedia.org/wiki/Nelder-Mead_method
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• AvgHeight: average height of the stem segment’s points

• N: number of points belonging to the stem segment

• PX,PY,PZ: absolute center positions of the stem segment points, in point cloud units (used for
plotting)

Brute Force Cylinder Fit

The brute force cylinder fit approach estimates the axis rotation angles by brute force combined with
2D ransac circle fit. The coordinates of a point cloud representing a single cylinder are iteratively
rotated up to a pre defined threshold, and for every iteration a circle is estimated after rotation is
performed. The rotation that minimizes the circle parameters the most is used to describe the axis
direction of the cylinder with the circle’s radius.

The parameters returned by the brute force cylinder fit method are:

• X,Y: 2D circle center coordinates after rotation

• Radius: 3D circle radius, in point cloud units

• Error: model circle error from the RANSAC least squares fit, after rotation

• DX,DY: absolute rotation angles (in degrees) applied to the X and Y axes, respectively

• AvgHeight: average height of the stem segment’s points

• N: number of points belonging to the stem segment

References

Liang, X. et al., 2012. Automatic stem mapping using single-scan terrestrial laser scanning. IEEE
Transactions on Geoscience and Remote Sensing, 50(2), pp.661–670.

Olofsson, K., Holmgren, J. & Olsson, H., 2014. Tree stem and height measurements using terrestrial
laser scanning and the RANSAC algorithm. Remote Sensing, 6(5), pp.4323–4344.

Conto, T. et al., 2017. Performance of stem denoising and stem modelling algorithms on single tree
point clouds from terrestrial laser scanning. Computers and Electronics in Agriculture, v. 143, p.
165-176.

Examples

file = system.file("extdata", "pine.laz", package="TreeLS")
tls = readTLS(file) %>%

tlsNormalize

tls = stemPoints(tls, stm.hough())
sgt = stemSegmentation(tls, sgt.ransac.circle(n=20))
tlsPlot(tls, sgt)
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stm.eigen.knn Stem denoising algorithm: KNN eigen decomposition + point normals
intersections voting

Description

This function is meant to be used inside stemPoints. It filters points based on their nearest neigh-
borhood geometries (check fastPointMetrics) and assign them to stem patches if reaching a
voxel with enough votes.

Usage

stm.eigen.knn(
h_step = 0.5,
max_curvature = 0.1,
max_verticality = 10,
voxel_spacing = 0.025,
max_d = 0.5,
votes_weight = 0.2,
v3d = FALSE

)

Arguments

h_step numeric - height interval to perform point filtering/assignment/classification.

max_curvature numeric - maximum curvature (from 0 to 1) accepted when filtering a point
neighborhood.

max_verticality

numeric - maximum deviation of a point neighborhood’s orientation from an
absolute vertical axis ( Z = c(0,0,1) ), in degrees (from 0 to 90).

voxel_spacing numeric - voxel (or pixel) spacing for counting point normals intersections.

max_d numeric - largest tree diameter expected in the point cloud.

votes_weight numeric - fraction of votes a point neighborhood needs do reach in order to
belong to a stem (applied for every TreeID), in relation to the voxel with most
votes with same TreeID.

v3d logical - count votes in 3D voxels (TRUE) or 2D pixels (FALSE).

Eigen Decomposition of Point Neighborhoods

Point filtering/classification methods that rely on eigen decomposition rely on shape indices calcu-
lated for point neighborhoods (knn or voxel). To derive these shape indices, eigen decomposition
is performed on the XYZ columns of a point cloud patch. Metrics related to object curvature are
calculated upon ratios of the resulting eigen values, and metrics related to object orientation are
caltulated from approximate normals obtained from the eigen vectors.
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For instance, a point neighborhood that belongs to a perfect flat surface will have all of its variance
explained by the first two eigen values, and none explained by the third eigen value. The ’normal’
of such surface, i.e. the vector oriented in the direction orthogonal to the surface, is therefore
represented by the third eigenvector.

Methods for both tree mapping and stem segmentation use those metrics, so in order to speed up
the workflow one might apply fastPointMetrics to the point cloud before other methods. The
advantages of this approach are that users can parameterize the point neighborhoods themselves
when calculating their metrics. Those calculations won’t be performed again internally in the tree
mapping or stem denoising methods, reducing the overall processing time.

Radius Estimation Through Normal Vectors Intersection

stemPoints methods that filter points based on eigen decomposition metrics (knn or voxel) provide
a rough estimation of stem segments radii by splitting every stem segment into a local voxel space
and counting the number of times that point normals intersect on every voxel (votes). Every stem
point then has a radius assigned to it, corresponding to the distance between the point and the voxel
with most votes its normal intersects. The average of all points’ radii in a stem segment is the
segment’s radius. For approximately straight vertical stem segments, the voting can be done in 2D
(pixels).

The point normals of this method are extracted from the eigen vectors calculated by fastPointMetrics.
On top of the point metrics used for stem point filtering, the following fields are also added to the
LAS object:

• Votes: number of normal vector intersections crossing the point’s normal at its estimated
center

• VotesWeight: ratio of (votes count) / (highest votes count) per TreeID

• Radius: estimated stem segment radius

This method was inspired by the denoising algorithm developed by Olofsson & Holmgren (2016),
but it is not an exact reproduction of their work.

References

Liang, X. et al., 2012. Automatic stem mapping using single-scan terrestrial laser scanning. IEEE
Transactions on Geoscience and Remote Sensing, 50(2), pp.661–670.

Olofsson, K. & Holmgren, J., 2016. Single Tree Stem Profile Detection Using Terrestrial Laser
Scanner Data, Flatness Saliency Features and Curvature Properties. Forests, 7, 207.

stm.eigen.voxel Stem denoising algorithm: Voxel eigen decomposition + point normals
intersections voting

Description

This function is meant to be used inside stemPoints. It filters points based on their voxel geome-
tries (check fastPointMetrics) and assign them to stem patches if reaching a voxel with enough
votes.
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Usage

stm.eigen.voxel(
h_step = 0.5,
max_curvature = 0.1,
max_verticality = 10,
voxel_spacing = 0.025,
max_d = 0.5,
votes_weight = 0.2,
v3d = FALSE

)

Arguments

h_step numeric - height interval to perform point filtering/assignment/classification.

max_curvature numeric - maximum curvature (from 0 to 1) accepted when filtering a point
neighborhood.

max_verticality

numeric - maximum deviation of a point neighborhood’s orientation from an
absolute vertical axis ( Z = c(0,0,1) ), in degrees (from 0 to 90).

voxel_spacing numeric - voxel side length.

max_d numeric - largest tree diameter expected in the point cloud.

votes_weight numeric - fraction of votes a point neighborhood needs do reach in order to
belong to a stem (applied for every TreeID), in relation to the voxel with most
votes with same TreeID.

v3d logical - count votes in 3D voxels (TRUE) or 2D pixels (FALSE).

Eigen Decomposition of Point Neighborhoods

Point filtering/classification methods that rely on eigen decomposition rely on shape indices calcu-
lated for point neighborhoods (knn or voxel). To derive these shape indices, eigen decomposition
is performed on the XYZ columns of a point cloud patch. Metrics related to object curvature are
calculated upon ratios of the resulting eigen values, and metrics related to object orientation are
caltulated from approximate normals obtained from the eigen vectors.

For instance, a point neighborhood that belongs to a perfect flat surface will have all of its variance
explained by the first two eigen values, and none explained by the third eigen value. The ’normal’
of such surface, i.e. the vector oriented in the direction orthogonal to the surface, is therefore
represented by the third eigenvector.

Methods for both tree mapping and stem segmentation use those metrics, so in order to speed up
the workflow one might apply fastPointMetrics to the point cloud before other methods. The
advantages of this approach are that users can parameterize the point neighborhoods themselves
when calculating their metrics. Those calculations won’t be performed again internally in the tree
mapping or stem denoising methods, reducing the overall processing time.

Radius Estimation Through Normal Vectors Intersection

stemPoints methods that filter points based on eigen decomposition metrics (knn or voxel) provide
a rough estimation of stem segments radii by splitting every stem segment into a local voxel space
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and counting the number of times that point normals intersect on every voxel (votes). Every stem
point then has a radius assigned to it, corresponding to the distance between the point and the voxel
with most votes its normal intersects. The average of all points’ radii in a stem segment is the
segment’s radius. For approximately straight vertical stem segments, the voting can be done in 2D
(pixels).

The point normals of this method are extracted from the eigen vectors calculated by fastPointMetrics.
On top of the point metrics used for stem point filtering, the following fields are also added to the
LAS object:

• Votes: number of normal vector intersections crossing the point’s normal at its estimated
center

• VotesWeight: ratio of (votes count) / (highest votes count) per TreeID

• Radius: estimated stem segment radius

This method was inspired by the denoising algorithm developed by Olofsson & Holmgren (2016),
but it is not an exact reproduction of their work.

References

Liang, X. et al., 2012. Automatic stem mapping using single-scan terrestrial laser scanning. IEEE
Transactions on Geoscience and Remote Sensing, 50(2), pp.661–670.

Olofsson, K. & Holmgren, J., 2016. Single Tree Stem Profile Detection Using Terrestrial Laser
Scanner Data, Flatness Saliency Features and Curvature Properties. Forests, 7, 207.

stm.hough Stem denoising algorithm: Hough Transform

Description

This function is meant to be used inside stemPoints. It applies an adapted version of the Hough
Transform for circle search. Mode details are given in the sections below.

Usage

stm.hough(
h_step = 0.5,
max_d = 0.5,
h_base = c(1, 2.5),
pixel_size = 0.025,
min_density = 0.1,
min_votes = 3

)
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Arguments

h_step numeric - height interval to perform point filtering/assignment/classification.

max_d numeric - largest tree diameter expected in the point cloud.

h_base numeric vector of length 2 - tree base height interval to initiate circle search.

pixel_size numeric - pixel side length to discretize the point cloud layers while performing
the Hough Transform circle search.

min_density numeric - between 0 and 1 - minimum point density within a pixel evaluated on
the Hough Transform - i.e. only dense point clousters will undergo circle search.

min_votes integer - Hough Transform parameter - minimum number of circle intersec-
tions over a pixel to assign it as a circle center candidate.

LAS@data Special Fields

Meaninful new fields in the output:

• Stem: TRUE for stem points

• Segment: stem segment number (from bottom to top and nested with TreeID)

• Radius: approximate radius of the point’s stem segment estimated by the Hough Transform -
always a multiple of the pixel_size

• Votes: votes received by the stem segment’s center through the Hough Transform

Adapted Hough Transform

The Hough Transform circle search algorithm used in TreeLS applies a constrained circle search
on discretized point cloud layers. Tree-wise, the circle search is recursive, in which the search for
circle parameters of a stem section is constrained to the feature space of the stem section underneath
it. Initial estimates of the stem’s feature space are performed on a baselise stem segment - i.e. a low
height interval where a tree’s bole is expected to be clearly visible in the point cloud. The algorithm
is described in detail by Conto et al. (2017).

This adapted version of the algorithm is very robust against outliers, but not against forked or
leaning stems.

References

Olofsson, K., Holmgren, J. & Olsson, H., 2014. Tree stem and height measurements using terrestrial
laser scanning and the RANSAC algorithm. Remote Sensing, 6(5), pp.4323–4344.

Conto, T. et al., 2017. Performance of stem denoising and stem modelling algorithms on single tree
point clouds from terrestrial laser scanning. Computers and Electronics in Agriculture, v. 143, p.
165-176.
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tlsCrop Point cloud cropping

Description

Returns a cropped point cloud of all points inside or outside specified boundaries of circle or square
shapes.

Usage

tlsCrop(las, x, y, len, circle = TRUE, negative = FALSE)

Arguments

las LAS object.

x, y numeric - X and Y center coordinates of the crop region.

len numeric - if circle = TRUE, len is the circle’s radius, otherwise it is the side
length of a square.

circle logical - crops a circle (if TRUE) or a square.

negative logical - if TRUE, returns all points **outside** the specified circle/square
perimeter.

Value

LAS object.

Examples

file = system.file("extdata", "pine_plot.laz", package="TreeLS")
tls = readTLS(file)

tls = tlsCrop(tls, 2, 3, 1.5, TRUE, TRUE)
plot(tls)

tls = tlsCrop(tls, 5, 5, 5, FALSE, FALSE)
plot(tls)
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tlsInventory Extract forest inventory metrics from a point cloud

Description

Estimation of diameter and height tree-wise for normalized point clouds with assigned stem points.

Usage

tlsInventory(
las,
dh = 1.3,
dw = 0.5,
hp = 1,
d_method = shapeFit(shape = "circle", algorithm = "ransac", n = 15, n_best = 20)

)

Arguments

las LAS object.

dh numeric - height layer (above ground) to estimate stem diameters, in point cloud
units.

dw numeric - height layer width, in point cloud units.

hp numeric - height percentile to extract per tree (0-1). Use 1 for top height, i.e.
the highest point.

d_method parameterized shapeFit function, i.e. method to use for diameter estimation.

Examples

file = system.file("extdata", "pine_plot.laz", package="TreeLS")
tls = readTLS(file) %>%

tlsNormalize %>%
tlsSample

map = treeMap(tls, map.hough())
tls = treePoints(tls, map, trp.crop(circle=FALSE))
tls = stemPoints(tls, stm.hough())

dmt = shapeFit(shape = 'circle', algorithm='ransac', n=20)
inv = tlsInventory(tls, d_method = dmt)
tlsPlot(tls, inv)
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tlsNormalize Normalize a TLS point cloud

Description

Fast normalization of TLS point clouds based on a Digital Terrain Model (DTM) of the ground
points. If the input’s ground points are not yet classified, the csf algorithm is applied internally.

Usage

tlsNormalize(las, min_res = 0.25, keep_ground = TRUE)

Arguments

las LAS object.

min_res numeric - minimum resolution of the DTM used for normalization, in point
cloud units.

keep_ground logical - if FALSE removes the ground points from the output.

Value

LAS object.

Examples

file = system.file("extdata", "pine_plot.laz", package="TreeLS")
tls = readTLS(file)
plot(tls)
rgl::axes3d(col='white')

tls = tlsNormalize(tls, 0.5, FALSE)
plot(tls)
rgl::axes3d(col='white')

tlsPlot Plot TreeLS outputs

Description

Plot the outputs of TreeLS methods on the same scene using rgl.
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Usage

tlsPlot(..., fast = FALSE, tree_id = NULL, segment = NULL)

add_segmentIDs(x, las, ...)

add_treeIDs(x, las, ...)

add_treeMap(x, las, ...)

add_treePoints(x, las, color_func = pastel.colors, ...)

add_stemPoints(x, las, ...)

add_stemSegments(x, stems_data_table, color = "white", fast = FALSE)

add_tlsInventory(x, inventory_data_table, color = "white", fast = FALSE)

Arguments

... in tlsPlot: any object returned from a TreeLS method. In the add_* methods:
parameters passed down to 3D plotting rgl functions.

fast logical, use TRUE to plot spheres representing tree diameters or FALSE to plot
detailed 3D cylinders.

tree_id numeric - plot only the tree matching this tree id.

segment numeric - plot only stem segments matching this segment id.

x output from plot or tlsPlot

las LAS object.

color_func color palette function used in add_treePoints.
stems_data_table, inventory_data_table

data.table objects generated by stemSegmentation and tlsInventory.

color color of 3D objects.

Examples

file = system.file("extdata", "pine.laz", package="TreeLS")
tls = readTLS(file) %>%

tlsNormalize %>%
stemPoints(stm.hough())

dmt = shapeFit(shape = 'circle', algorithm='ransac', n=20)
inv = tlsInventory(tls, d_method = dmt)

### quick plot
tlsPlot(tls, inv)

### customizable plots
x = plot(tls)
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add_stemPoints(x, tls, color='red', size=3)
add_tlsInventory(x, inv, color='yellow')
add_segmentIDs(x, tls, color='white', cex=2, pos=4)

tlsRotate Rotate point cloud to fit a horizontal ground plane

Description

Check for ground points and rotates the point cloud aligning its ground surface to a horizontal plane
(XY). This function is especially useful for point clouds not georeferenced or generated through
mobile scanning, which might present a tilted coordinate system.

Usage

tlsRotate(las)

Arguments

las LAS object.

Value

LAS object.

tlsSample Resample a point cloud

Description

Applies a sampling algorithm to reduce a point cloud’s density. Sampling methods are prefixed by
smp.

Usage

tlsSample(las, method = smp.voxelize())

Arguments

las LAS object.

method point sampling algorithm. Currently available: smp.voxelize and smp.randomize

Value

LAS object.
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Examples

file = system.file("extdata", "pine.laz", package="TreeLS")
tls = readTLS(file)
nrow(tls@data)

### sample points systematically from a 3D voxel grid
vx = tlsSample(tls, smp.voxelize(0.05))
nrow(vx@data)

### sample half of the points randomly
rd = tlsSample(tls, smp.randomize(0.5))
nrow(rd@data)

tlsTransform Simple operations on point cloud objects

Description

Apply transformations to the XYZ axes of a point cloud.

Usage

tlsTransform(
las,
xyz = c("X", "Y", "Z"),
bring_to_origin = FALSE,
rotate = FALSE

)

Arguments

las LAS object.

xyz character vector of length 3 - LAS’ columns to be reassigned as XYZ, respec-
tively. Use minus signs to mirror an axis‘ coordinates - more details in the
sections below.

bring_to_origin

logical - force point cloud origin to match c(0,0,0)? If TRUE, clears the
header of the LAS object.

rotate logical - rotate the point cloud to align the ground points horizontally (as in
tlsRotate)?

Value

LAS object.
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XYZ Manipulation

The xyz argument can take a few different forms. It is useful for shifting axes positions in a point
cloud or to mirror an axis’ coordinates. All axes characters can be entered in lower or uppercase
and also be preceded by a minus sign (’-’) to reverse its coordinates.

Examples

file = system.file("extdata", "pine.laz", package="TreeLS")
tls = readTLS(file)
bbox(tls)
range(tls$Z)

### swap the Y and Z axes
zy = tlsTransform(tls, c('x', 'z', 'y'))
bbox(zy)
range(zy$Z)

### return an upside down point cloud
ud = tlsTransform(tls, c('x', 'y', '-z'))
bbox(ud)
range(ud$Z)
plot(zy)

### mirror all axes, then set the point cloud's starting point as the origin
rv = tlsTransform(tls, c('-x', '-y', '-z'), bring_to_origin=TRUE)
bbox(rv)
range(rv$Z)

treeMap Map tree occurrences from TLS data

Description

Estimates tree occurrence regions from a normalized point cloud. Tree mapping methods are
prefixed by map.

Usage

treeMap(las, method = map.hough(), merge = 0.2, positions_only = FALSE)

Arguments

las LAS object.

method tree mapping algorithm. Currently available: map.hough, map.eigen.knn, map.eigen.voxel
and map.pick.

merge numeric - parameter passed down to treeMap.merge (if merge > 0).

positions_only logical - if TRUE returns only a 2D tree map as a data.table.
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Value

signed LAS or data.table.

Examples

file = system.file("extdata", "pine_plot.laz", package="TreeLS")
tls = readTLS(file) %>%

tlsNormalize %>%
tlsSample

x = plot(tls)

map = treeMap(tls, map.hough(h_step = 1, max_h = 4))
add_treeMap(x, map, color='red')

xymap = treeMap.positions(map)

treeMap.merge Merge tree coordinates too close on treeMap outputs.

Description

Check all tree neighborhoods and merge TreeIDs which are too close in a treeMap’s object.

Usage

treeMap.merge(map, d = 0.2)

Arguments

map object generated by treeMap.

d numeric - distance threshold.

Details

The d parameter is a relative measure of close neighbors. Sorting all possible pairs by distance from
a tree map, the merge criterion is that none of the closest pairs should be distant less than the next
closest pair’s distance minus d. This method is useful when merging forked stems or point clusters
from plots with too much understory, especially if those are from forest stands with regularly spaced
trees.
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treeMap.positions Convert a tree map to a 2D data.table

Description

Extracts the tree XY positions from a treeMap output.

Usage

treeMap.positions(map, plot = TRUE)

Arguments

map object generated by treeMap.

plot logical - plot the tree map?

Value

signed data.table of tree IDs and XY coordinates.

Examples

file = system.file("extdata", "pine_plot.laz", package="TreeLS")
tls = readTLS(file) %>%

tlsNormalize %>%
tlsSample

x = plot(tls)

map = treeMap(tls, map.hough(h_step = 1, max_h = 4))
add_treeMap(x, map, color='red')

xymap = treeMap.positions(map)

treePoints Classify individual tree regions in a point cloud

Description

Assigns TreeIDs to a LAS object based on coordinates extracted from a treeMap object. Tree region
segmentation methods are prefixed by trp.

Usage

treePoints(las, map, method = trp.voronoi())
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Arguments

las LAS object.

map object generated by treeMap.

method tree region algorithm. Currently available: trp.voronoi and trp.crop.

Value

LAS object.

Examples

file = system.file("extdata", "pine_plot.laz", package="TreeLS")
tls = readTLS(file) %>%

tlsNormalize %>%
tlsSample

map = treeMap(tls, map.hough())
tls = treePoints(tls, map, trp.crop(circle=FALSE))

x = plot(tls, size=1)
add_treePoints(x, tls, size=2)
add_treeIDs(x, tls, color='yellow', cex=2)

trp.crop Tree points algorithm: fixed size patches.

Description

This function is meant to be used inside treePoints. Assign points to a TreeID inside cir-
cles/squares of fixed area around treeMap coordinates.

Usage

trp.crop(l = 1, circle = TRUE)

Arguments

l numeric - circle radius or square side length.

circle logical - assign TreeIDs to circular (TRUE) or squared (FALSE) patches.
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trp.voronoi Tree points algorithm: voronoi polygons.

Description

This function is meant to be used inside treePoints. Assign **all** points to a TreeID based on
their closest treeMap coordinate.

Usage

trp.voronoi()

writeTLS Export TreeLS point clouds to las/laz files

Description

Wrapper to writeLAS. This function automatically adds new data columns as extra bytes to the
written las/laz file using add_lasattribute internally.

Usage

writeTLS(las, file, col_names = NULL, index = FALSE)

Arguments

las LAS object.

file file path.

col_names column names from las that you wish to export. If left empty, all columns not
listed among the standard LAS attributes are added to the file.

index logical - write lax file also.

Examples

file = system.file("extdata", "pine.laz", package="TreeLS")
tls = readTLS(file) %>% fastPointMetrics#'
tls_file = tempfile(fileext = '.laz')
writeTLS(tls, tls_file)

up_tls = readTLS(tls_file)
summary(up_tls)
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